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The structure of shock waves is investigated for the case of multicomponent and multi-
phase mixtures containing a neutral gas and ( ¥ — 1 ) gradesof charged particles; each
grade is characterized by its own mobility coefficient, The interaction parameter is ar-
bitrary. The analysis is made for the case of small Prandtl numbers when the tempera-
ture of the medium can be considered constant and for the case of large Prandtl num=
bers when heat conducting processes can be neglected, As in conventional electrohyd=
rodynamics [1], the solution of the structure problem for an electrohydrodynamic shock
wave depends substantially on the velocity direction, the electric field and on the cur-
rent density ahead of the wave front, For definiteness, everywhere throughout the follow-
ing analysis it is assumed that the velocity normal component u; > 0 ahead of the shock
wave front, It is shown, that if the electric field ahead of the wave has a component
normal to the front of the shock wave E; >> 0, there is always a shock wave structure
and the electric field at the wave front is continuous, If £; <C 0 and the current den~
sities of all components are positive, a shock wave structure does not occur for all values
of parameters ahead of the wave front, If the structure exists, then it follows from the
analysis that the electric field at the wave front is either continuous or discontinuous,
In the latter case the electric field and velocity components normal to the wave front
are related behind the wave front by the equation uy + 8,E;; = 0, where b, is the
greatest mobility coefficient of the mixture components, The surface charge at the
shock wave front is caused by a sharp increase in the charge density of the mixture
component having the greatest mobility coefficient, As follows from the shock wave
analysis, in the case when E; < 0 and current densities of all components are negative,
the electric field at the shock wave front is continuous, if ahead of the wave front the
sum u; + byEp s 0 (by is the smallest mobility coefficient of the components), If
the sum u; + byE; = U, the field at the wave front may suffer a discontinuity, Inorder
to determine the parameters behind the wave front, one of the parameters behind the
wave must be specified, If, moreover, behind the wave front uyp + byE|[ == 0, then
the velocity ahead of the wave is greater and behind it smaller than the speed of sound,
If upy + byEyp = O then the gas velocity ahead of and behind the shock wave front is
suparsonic, The existence of this kind of shock wave structure was pointed out in con-
ventional electrohydrodynamics [1] for one grade of charged particles, When the motion
of a multicomponent medium is considered, the component with the smallest mobility
coefficient acts as that with one grade of charged particles, When E, <0 and the cur-
rent densities of the components have different signs, the shock wave structure does not
exist for all parameter values ahead of the wave front, Let the current densities j,.
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s+« - ip be negative and j,,;» ipyer - - +» JN — positive, The form of additional rela-
tions which close the system of equations of the shock wave front can be found by ana-
lyzing the wave structure, Moreover, there are some cases when the electric field at the
shock wave front is either continuous or discontinuous and the parameters be-
hind the wave front or ahead of the wave, are expressed by the relations upp -+
by By = 0 or up + bpEp = 0,respectively, In the latter case one of the parameters
behind the wave front must be specified in order to determine the remaining parameters,
Moreover, if u;;+b E, 540, the velocity ahead of the shock wave front is supersonic
and behind it — subsonic, There exists a shock wave structure in which ahead of the
wave front the sum u +b F =t and behind the front u;+b,E;,=0, and the gas velo-
city ahead of, and behind the shock wave front is supersonic, From the analysis of the
shock wave structure, if the structure exists, it follows that in the case of a negative field
(E; < 0) and currents of different signs, there exists a type of shock wave for which,
ahead of the front and behind it, the parameters of the medium satisfy the equations

uy + bpEy=0 and w4 bpyEyp = 0. The gas velocity ahead of the wave is superso-
nic and behind the wave — subsonic, The density distribution of the total bulk charge
inside the structure of such waves has twomaxima, The first maximum is caused by an
increase in the charge density of p-grade of charged particles (changes in charge densi~
ties of other components are small), the second maximum — by an increase in the charge
density of ( p -+ 1 )grade of charged particles, while there is only a small change in the
charge density of the remaining components, Shock waves of this type can be formed
only in mixtures containing charged particles of different grade; they do not exist in
conventional electrohydrodynamics,

1, Let us consider (applying the electrohydrodynamic approximation) a stationary
flow of a multicomponent or multiphase medium ~ of a gas and (N — 1) grade of ions
or charged particles, We shall denote by a subscript a.(a=_2, 3, ..., N) parameters
relating to the corresponding grade of charged particles, We direct the z coordinate
axis along the stream velocity and assume that the electric field has a single component
parallel to the axis, Let all parameters of flow be dependent only on z. To define a
flow of charged particles or drops, if those are present, we use the diffusion approxima-
tion [2], Equations defining this flow allowing for viscosity and heat conduction (see
also [1-37) can be written as
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The dimensionless parameters from Egs, (1,1)—(1, 3) are given by formulas
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Here p*, u*, p*, T'* are the dimensional density, velocity, pressure and temperature of
the medium, respectively ; ¢, * > 0, j,*, E*, o* are, respectively, the dimensional bulk
charge density, the current density, the electric field intensity and the electric potential,
b, is the mobility coefficient of charged particles of a-grade; n, x are the coefficients
of viscosity and thermal conductivity of the mixture (in the subsequent analysis the va~-
lues of b,, 7, % are considered constant); cp, ¢y are the specific heats, ¢ is the
tength of the mean free path,

By the zero subscript we denote the parameters of a particular point of the stream at
which the terms appearing in the left~hand sides of the second of Eqs, (1.1) and of the
first of Eqgs, (1,2),and related to viscosity and thermal conductivity, can be neglected,
The integration constants II and I defined by flow parameters at this point are

1 1

1
== e »—wS, S o= :
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According to the law of conservation and Maxwell's equations, the system of relations
at the shock wave front in a multiphase medium is not closed, similarly as in conven=-
tional electrohydrodynamics [1, 3], The missing relation in conventional electrohydro-
dynamics was obtained in [3] for the case of small and in {1] for the case of an arbitrary
interaction parameter, In the electrohydrodynamics of multiphase media corresponding
relations for a small interaction parameter were derived in [2, 4],and for the case of a
large interaction parameter and small Prandtl numbers in [5], In the latter case it can
be assumed that the temperature of the medium is constant and the first equation of
(1.2)replaced by T = 1.

Below, the structure of a shock wave is analyzed and the equations are found which
close the system of relations at the shock wave front in a multicomponent or multiphase
medium for the case of an interaction parameter for any quantity of components when
Prandtl number Pr 3 1, which corresponds to a low thermal conductivity of the mix~
ture,

Neglecting in the first equation of (1.2) the term with the derivative dT / d{ , assum-
ing ¢ = g, [1] and using the second equation of (1,1), we obtain the expression for
the gas temperature
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T=v@p—1) M2, u2— SEu — Iu 4 Z) (1.6)

Let us examine the behavior of the integral curves from Eqs, (1.1),(1.3) and (1,6)
in the semi-plane ukE, u> 0. We divide the first equation of (1, 3) by the second
equation of (1,1) in which the temperature 7' is expressed by (1,6),and we obtain

N N
dEjdu = 3 e [[ & + Rogw) [ Loy [T Lo (1.7)
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Assuming g,* > 0, the value
[ | = 4ngo* 1| Ryala | [Eo* | <1

and coefficients b, > b, > ... >> by in the all region of flow,and | Rov | >
| Ryv-1y | > ... > | Rq, | . Let at the beginning Ey* < 0. The lines Lo = 0
and L(Z) = 0 are the isoclines on which the integral curves of Eq, (1, 7) have vertical
tangents (df / du = o). These lines,the behavior of which is determined by para-~
meters v, My, R, and S, we denote by L. and L) ,respectively, The form of
the line L(2)° was examined in [1], In Figs, 1—5 the case is shown, when in the plane
uE the line L)’ for u>>0, £ >0 has one branch with an extremum at the point
Up, E,,. All results are easily generalized to the case of a different position of L.
The form of the line Z)°, on which the velocity is equal to the speed of sound, was
also investigated in [1], The intersection of this line with L)’ is only possible at
extrema of the line L) (if they exist), If L, and L;° intersect, then the parts
of L)° lying in the interval y < u,, are in the subsonic region and those in the in-
terval © > u,, are in the supersonic region; the velocity at the point of intersection
is sonic, One of the possible behaviors of the line L, is shown in Fig, 1 by a dashed
line, In the other figures this line is not shown in order to have more readable graphs,

Applying reasoning analogous to that given in [1], we obtain that lines Lfl)a and
L)° can intersect either at one point lying in the subsonic or supersonic region or at
three points — Figs, 1—5, In the latter case all points may be situated in the super-
sonic region — Figs, 2,4, 5; or two of them are in the supersonic and one in the sub~
sonic region —Figs, 1, 3, The coordinates of the points of intersection are determined
by the following equations:

E = — Rju

2.3 11 o _t _(_1_ =1\ _o
SRoqu® — a0 + (1 T T § TMo? T

Then we shall examine the behavior of the integral curves of Egs, (1, 7) only in those
regions where they have a physical meaning, Integral curves which run below the iso-
cline L, between the isoclines L, and Lg,,, and those above the isocline L)y,
define flows for /, > (Fig, 1); for jp < 0, jp,1 >0 (Figs, 3—5) and for ja <0
(Figs. 1, 2), respectively (everywhere « = 2,3, .. .N, 2<<p < (N — 1)), Inorder
not to complicate the graphs , only two from( N — 1) L;,,, isoclines are shown, nam-

(1a
ely: L, and L,y ; they correspond to the components with the greatest and the
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smallest mobility coefficients in Fig, 1,and L(,, Lyp.1 in Figs, 3~5,

2, Let us consider a mixture flow when jo > 0, o = 2, , N. Integral curves
defining such a flow lie below the isocline L(l ,(Fig. 1). The direction of motion along
the integral curves is shown by arrows in Fig, 1, An investigation of the shock waves
shows that the form of the relations obtained for the wave structure depends substantially
on the position of the isoclines L(z) and L(m. We shall consider the most interesting
case when the lines L(%) and Lm2 intersect at three points Ay, B, and C, (the point
C, is not shown in Fig, 1); the point A, is in the subsonic, while B, and (C, are in the
supe:sonic region, We denote the elecu'ic field value of these points by E,, E,,, E,
We consider that these parts of the integral curves in the super- and subsonic regions,
where integral curves run in the g-neighborhood of Li,°,and represent a gas flow ahead
of and behind the shock wave, respectively, Points at which integral curves (for ¢ — 0)
leave the & -neighborhood of the isocline L)%, correspond to the states ahead of the
shock wave, Point at which, for & — 0, integral curves enter the &-neighborhood of
the isocline L(2)°, correspond to the states behind the shock wave, Parts of integral
curves which are parallel to the axis £ = 0 and to the isocline L(Om ydescribe the struc-
ture of the electrohydrodynamic shock wave, We denote by numerals I and II the field
values ahead of and behind the shock wave, respectively, By analysis analogous to that
in [1], it can be shown that the integral curves with a fleld Ep < E,,, ahead of the
wave front,define the shock wave structure with a continuous field at the wave front,

If E,, < Ey < E,,, then the integral curves on which the selected value of a field
ahead of the wave front lies, describe a shock wave structure with a discontinuous elec-
tric field and the formation of a surface charge at the wave front, To find the value of
the surface charge at the wave front, i, e, to close the system of relations at the front of
the shock wave, it is necessary to use the following equations:

uII* + b:_,EII* = O, 4“5 = — uI[* / b'.! - EI* (201)

The surface charge at the wave front is caused by a sharp increase in the charge den-
sity of the component with the highest mobility coefficient, Integral curves leaving the
isocline L)’ above the point (, and intersecting the line L)°, do not run along it
afterwards — there is no region corresponding to an inviscid flow, Such integral curves
do not define a shock wave structure, It is noted,that algebraic relations following from
the law of conservation at the front of the shock wave permit a jump from a state corre-
sponding to the part described of the isocline L, (inviscid flow) to the state determ-
ined by the part of the isocline L,)° lying in the subsonic region (also defining an in~
viscid flow), Everything said above indicates that the shock waves of such type do not
possess a structure,

In the case when the isoclines Ly, L) intersect only at the point 4, of the sub~
sonic region, the field at the shock wave front is continuous and the surface charge is
equal to zero, if £y < E,,. If Ey > E,,, then integral curves on which the selected
value of an electric field lies, describe a shock wave swucture with a discontinuity of
the electric field and the formation of a surface charge at the wave front, To determine
the value of this surface charge, i, e, to close the system of relations at the shock wave
front, it is necessary to use Egs, (2, 1).

In the case when the isoclines L(m and L, intersect at points in the supersonic
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region, there are no integral curves defining the shock wave structure,

8, Let us consider a mixture flow when j, <7 0, & = 2 ... N. The isocline L;,N
corresponds to a component with the smallest mobihty coefficient. Integral curves de-
fining such a flow lie above the isocline LN (Fig. 1, 2). The form of the relations
obtained from the examination of the shock wave structure depends substantially on the
position of the isoclines L(l)N and L,)°. It follows from the third equation of (1, 3) that
[ Ry | <1, @ =2,...,N. The lines L and Lu)N may have either three points
or'one point of intersection. In the latter case the point of intersection lies in the super~
sonic region,

In Fig, 1 we have the case when the isoclines L{l)N and L, intersectarthree points

Ay, By, Cy; the point Ay lies in the subsonic region and point By and Cy in the
supersonic region of the plane uF. We denote the values of the electric field at the
points Ay,By and Cy by E,n, En and E,y ,respectively (E,y < E,n < E.n)-
We assume that behind the wave front the electric field intensity satisfies the inequality

Eon<Eu<Euy (3.1)

Integral curves on which the selected value of the electric field Ey; can lie, define
a shock wave structure with a discontinuous electric field at the wave front [1], Para-
meters ahead of the wave front satisfy the relation

ur* + byEr* =0 (4nis = Ey* -+ uy* [ by) (3.2)

The electric field behind such a discontinuity can have any values satisfying inequal~
ities (3,1), To determine flow parameters behind the shock wave front when the para~-
meters ahead are known and the condition (3, 2) is fulfilled, one of the parameters behind
the wave fromt must be specified, We note that the value of the electric field behind
the wave front should be within the limits determined by the inequality (3,1), The ex-
istence of this kind of shock waves in conventional electrohydrodynamics in the case of
a small interaction parameter was indicated in [67], If the electric field behind the shock
wave front satisfies the inequality £,y < £y < E.v, then there is a continuous elec-
tric field at the front of the shock wave and the surface charge intensity is equal zero,

Let us examine some examples of flows in the case when the isoclines L,® and LmN
intersect in the supersonic region, We denote the intersection points by Ay, By, Cy
in the case of three points,and by Ay in the case of one point of intersection, It is not
difficult to see that in the case of three intersection points of the isoclines L,y and
Ly’ (Fig, 2) lying in the supersonic region, the electric field at the shock wave front is
continuous, if behind or ahead of the wave front the inequlities E,y < Err < Ecn,

Ey < E,y are satisfied, respectively, The fleld undergoes a discontinuity, if behind
the wave front the inequalities E.v<CFH, ;< FE,y are satisfied; parameters ahead of the
discontinuity front satisfy Eqs, (3.2), To determine the flow parameters behind the shock
wave front when parameters ahead of it are related by (3, 2), one of the parameters be-
hind the wave front must be specified, In addition, the value of the electric field behind
the wave front must be held within the limits defined by the inequalities £,y < £11 <
Eyn. The gas velocity is subsonic in all the cases mentioned above, There exists a set
of integral curves leaving the small neighborhood of the point By with a slope equal

to the slope of the line L(”N Below the point By such integral curves run along the
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isocline LZW to the point Ay and then along the isocline LE;). (In Fig, 2 the corres=
ponding integral curve is shown as a dashed line), Such integral curves define a structure
of shock waves, parameters of which ahead of and behind the wave front are related by
the equations w;* 4 by E;* = 0, | = I, II; the velocity behind the front of wave
(as.well as ahead of the wave) is supersonic and equal to the larger root of the equation
Ly (u, Esn) = 0.We note that there exists a shock wave structure for which the velo-
city behind the wave front is subsonic and equal to the smaller root of the equation

Ly (u, E,n) = 0; the field behind the wave front £;; — [,5, while ahead of the
front it satisfies the relation (3, 2),

Let the isoclines L.:fz), L?m,- have only a single point of intersection lying in the super-
sonic region, We assume that the field ahead of the wave front satisfies the inequality
E; < L ~. Integral curves on which the selected value of the electric field can lie,
define the structure of the shock wave with a continuous field, Other shock waveshaving
structure do not exist in this case,

4, Let us consider the flow when j, <~ 0 for a = 2, S o oand jq > 0 for
=p -+ 1,...., N.InFig, 3 the isoclines [, , L5, and Loy are constructed,
Integral curves defining such a flow are disposed between the isoclines L ip+y ond

L(Ol)p, Investigation of the shock wave structure shows that the form of relatlons for thls

structure depends substantially on the position of the isoclines L, 1041y Ly, and L(z)
It follows from the third equation of (1,8) that | Rpo| <7 1 for & = 2,3, ... ,p and

| Ryq }/ 1 for & = p-- 1, p -+ 2 ... N. The isoclines Lm‘" and L(um, , aswell
as L, and Lmﬁﬂ may have either three points of intersection, two of which or all
three are in the supersonic region, or a single intersection point; the latter can lie in
either the sub- or supersonic region,

4,1, Let the isocline LQ) have three points of intersection with the isoclines Lmu
and Lyt Ay, By, Cp and A v, Byags Cpyy s Tespectively, We denote the value
of the electric field at points of intersection A,, B, C,, and 4, {, B, ), by
Eopy Eypy Eopy and Eqpo1s Evpias L. p,1, respectively, In Fig, 3 points A, and A4,,,

lie in the subsonic region; moreover, the inequality £, ,,; < [, is satisfied,

We denote by the numeral I the integral curve which for £ —- 0 emerges with zero
slope from the small neighborhood of the point 5, and by the numeral II —the integ~
ral curve which enters the small neighborhood of the point 4, ; with zero slope (in
Fig, 3 shown by dashed lines), Integral curves leaving the neighborhood of line L,)” with
zero slope between the points 5, and B, , (the field ahead of the shock wave front
satisfies the inequality E., < E; < L,p,,) runto the isocline LS ‘-1, then turn, go
along the isocline and intersect the line [~ in the neighborhood of the point 4,,,.
These integral curves define the structure of a shock wave with a jump of the electric
field at the wave front, To close the system of equations at the shock wave front it is
necessary to use the conditions

* —+— prEH* == O, 4 = — un* / bp+1 - EI* (4.1)

Below the integral curve I there are integral curves defining the structure of the shock
waves with a jump of the electric field at the wave front,and which ahead of the wave
front are characterized by

ur* 4 bpEr* := 0 (Er = — Ropur) (4.2)
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Integral curves below the line I1 intersect the isocline L,° between points Ap and
A,y To find the state behind the front of such shock waves, one of the parameters
behind the wave front must be specified, In partucular, the value of the electric field
can be specified within the limits E,p, < Erp << E p,y-

There existsa set of integral curves detining the structure of shock waves for which,
inside the structure, the density distribution of the total bulk charge has two maxima,
These integral curves lie between the lines I and II, They all emerge from the neigh-
borhood of the point B, run along the isocline La)p, move from it, run with a small
angle of inclination to the isocline L(l)pﬂ, turn and enter its €-neighborhood to inter-
sect the isocline Ly)’ in the e-neighborhood of the point A p,;. One such integral curve,
curve I1I,is shown in Fig,3, Ahead of the front of shock waves represented by the in-
tegral curves defined above, the sum £y + Ry pur = 0, and behind the front the sum
Ey + Rgp, uir = 0. Ahead of the front of such a shock wave the velocity is super~
sonic and behind it — subsonic, Shock waves of this type canbe found only inthe media con-
taining several grades of charged parricles and cannot exist in conventional electrohydro-
dynamics, The first maximum in the density distribution of a bulk charge inside the
wave structure is caused by an increase in charge density ¢,(charge densities ¢;, { 7= p,
undergo small changes), the second maximum is caused by an increase in charge den=
sity ¢p,; (charge densities ¢;, i = p -+ 1, change insignificantly),

If the field ahead of the wave front satisfies the inequality £, ,, < Ey < E
there is no structure of shock waves,

We shall now consider the case when E_, > Epp. We assume that the field ahead
of the shock wave front satisfies the inequality £, < Ey<{£p,,,- Then at the shock
wave front the electric field suffers a discontinuity, The parameters behind the wave
front satisfy the first relation of (4,1), Let the field behind the shock wave front satisfy
the inequalities £,,< E; < Epp, then ahead of the wave front the condition (4, 2) is ful-
filled and the surface charge is formed at the wave front, In the case when one of the
following inequalities is satisfied:

Epp < Er < Eap+1’ Epp < Ep < Eap+1

the field at the wave front is continuous and the surface charge intensity ie equal zero,

Let us consider the case when the isoclines Lfnp +1 and L,° have one point of inter-
section A, in the subsonic region, while the isoclines L(‘;)p and L, have three points
of intersection Ap, Bp, Cp and one of them lies in the subsonic region, In this case in
orderto find the surface charge, the results of Sect, 4,1 can be used replacing Eppi by
Ep in the inequalities Epp < Ep < Eypyy Egpiy < Er < Eppu

4,2, Let us consider the case when all three points of intersection of the isoclines
Ly and L(l)p are m the supersonic region and one of the points of intersection of the
isoclines L,,° and meﬂ lies in the subsonic region; moreover, we assume K;p,, <
E,p and E,, < E,,, , (Fig. 4). By numerals I and I1II we denote integral curves
which for € — 0 leave with zero slope the small neighborhood of points B » and 4,,
respectively, and by the numeral II - integral curve which enters the small neighbor~
hood of the point A ,,; with zero slope, Integral curves emerging, for £ — 0 , with
zero slope from the neighborhood of the line L,)° between points B, and By (the
field ahead of the shock wave front satisfies the inequality E,, < EI < Eype1)s
with zero slope to the isocline L(l)pﬂ, then along it and intersect the isocline L(o) in

cpPr
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the neighborhood of the point A ;. To close the system of equations at the shock
wave front and to calculate the bulk charge intensity, Eqs, (4,1) are used,

Below the integral curve III lie integral curves which define the structure of shock
waves with a continuous electric field at the wave front (£,, <7 Ey <7 E ;).

Between the lines I and ITI there are integral curves defining the structure of shock
waves in which parameters ahead of the wave front are related by formulas (4,2), All
these integral curves emerge from the neighborhood of the point B, and first runalong

the isocline L(l)p We note that the integral curves lying between hnes I and II define
a shock wave structure in which the parameters of the medium ahead of the wave front
satisfy the equation uy -+ pr'I = () and behind the front — the relation uy -
bpaky; = 0. Ahead of the shock wave front the velocity is supersonic and behind the
front — subsonic, Inside the structure of such shock waves the bulk charge density dis-
tribution has two maxima, The first maximum of the density distribution in the bulk
charge is caused by an increase in the charge density ¢, (changes in charge densities

gi» I 7= p are small), the second maximum is caused by anincrease in charge density
Jp+1 (changes in charge densities ¢;, i 5= p -} 1, are small), Shock waves of this type
are possible only in the electrohydrodynamics of a multiphase medium and are impos=-
sible in the electrohydrodynamics of charges particles of a single grade, Among the in-
tegral curves emerging from the small neighborhood of the point B, with an inclina-
tion equal to that of the isocline L«”p, there is a set of integral curves which run along
the isocline L{,, to the point Ap and then along the isocline L,°. Such integral
curves define a shock wave structure with parameters ahead of and behind the wave front
which are related by the equation &;* 4 b,E* =0, [ = I, II ; the velocity behind
the wave front (as well as ahead of the wave) is supersonic and equal to the larger root
of the equation L) (&, E,p) = 0. We note that there exists a structure of the wave
for which the velocity behind the wave front is subsonic and equal to the smaller root

of the equation Ly (&, E,p) = 0; the field behind the wave front Eyy = E,;,. and
ahead of the wave satisfies the relation (4. 2),. Integral curves, situated between lines I1
and 111 define a shock wave structure in which parameters ahead of the front are related
by (4.2)., To close the system of relations at discontinuities, the structure of which is
defined by such integral curves, it is necessary to specify one of the parameters behind
the wave front; in this case the field must be specified within the interval E_p <

Ey < Eapﬂ. If ahead of the wave front Ecp+1 <L Ep << E¢p, there is no shock wave
structure,

In the case when E.p > E,,,,, there is an analogous method of analysis, When
Lvp <Ep < By, Eppyy < Ep < Egp . the parameters behind the wave front are rela-
ted by (4,1), When £, <E; < E,,,, ,the field behind the wave front is continuous, etc,

We shall now consider the case when £, +1>> Evp. Let the field ahead of the wave
front satisfy the inequalities Eoppn < Er<Ep,.- Then at the shock wave front the elec-
tric field suffers a discontinuity and the parameters behind the front satisfy the first rela-
tion of (4,1), If behind the wave front the field satisfies the inequality Eg.p << E1p << Epp,
the parameters ahead of the front are related by (4,2) and a surface charge is formed at
the front, In the case when one of the following inequalities is fulfilled

Epp < EI < Eap-ﬂ’ EbP II< Eap+1* EI < Eap

the field at the wave front is continuous and the surface charge intensity is equal to zero,
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There exists a shock wave structure for which, ahead of and behind the wave front,
the relations E;* + bpus* = 0, =1, Il are fulfilled, The velocity behind the wave
front {as well as ahead of the wave) is supersonic and equal to the larger root of theequa-
tion L, (u, Eqp) = 0. We note that thereexists a wave structure for which the velocity
behind the wave front is subsonic and equal to the smaller root of the equation L @ (u,
Egpy = 0. The field behind the wave front E;;= E,p and ahead of the wave front, satis-
fies the relation (4, 2) If E Cp 4 << £y << Egp, 2 shock wave structure does not exist,

Let the isoclines L(z) and Lm have three points of intersection in the supersonic
region, while isoclines L,°and me ., have a single point of intersection 4,,, lying
in the subsonic region, In this case the surface charge can be determined using the results
of Sect, 4,2 and replacing E, . by E;p in the inequalities Epp < £y < Eppir Eopa <

< E bpr1 e

Now we consider the case when the isoclines L, and me intersect at a single point
4y in the supersonic region, and the isoclines 7.~ 5 and L(l)pﬂ intersect in the subsonic
region at the noint 4, . The position of the isoclines differs from that in Fig.,4: the
supersonic branch of the isocline L, intersects the isocline L, at the point 4p and
then continues to run below it, Let us assume that ahead of the wave front the field satis-
fies the inequalities £y < Eup, if Egp < £y, Or E;<CE i Eqp>> B, (- The
imegral curves, on which a selected value of the electric field can lie, define a shotk
wave structure with a continuous field at the wave front, Let us assume that the field
ahead of the wave front satisfies the inequalities £, , < E; < Eup, when Egp> Eipas
The integral curves, on which a selected value of the electric field can lie, define ashock
wave structure with a discontinuity of the electric field, The fieid behind the wave front
must satisfy the first relation of (4,1), In this case there are no other shock waves posses-
sing structures,

4,3, Let us consider the case when the isocline L,” has three points of intersection
Ap, By, Cp and Apiq, Bpiyy Cpiy with each of the isoclines L), and meﬂ, respece
tively, and all three intersection points lie in the supersonic region (Fig, 5§), Among the
integral curves leaving the small neighborhood of point B, with an inclination equal to
that of the isocline L(l)p, there are integral curves whlch run along the isocline me
to the point 4, and then along the isocline L, )+ Such integral curves define a shock
wave structure W1th parameters ahead of and behind the wave front related by u,* -+
bpE* = 0, I = I, I1. The gas velocity behind the wave front (as well as ahead of the
wave) is supersonic and equal to the larger root of the equation Ly, (u, E,p) = 0.
There are no other integral curves defining a shock wave structure, In fact, integral
curves which intersect the isocline L, in the neighborhood of the point A .y, do not
run along the isocline at all, In other words, an inviscid flow ahead of the shock wave,
corresponding to the segment BB,y of the isocline L), cannot be linked with any
inviscid flow related to the state behind the shock wave,

Analogous conclusions can be reached when the isoclines Lfo} and La)pﬂ have a sin-
gle point of intersection 4, in the supersonic region and the isoclines 1‘(2) and L,
intersect at three points Ay, By, €, lying in the supersonic region, In this case the shock
wave structure exists, and its velocity behind and ahead of the front is supersonic,

In the case when the isocline L(z) intersects the isocline me ,; @t a single supersonic
point and has a single point of intersection with the isocline 1’ lying in the super~

mp
sonic region, there are no integral curves defining the shock wave structure,
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We propose a way of obtaining the second and successive approximations in con=-
structing a solution by Chernyi’s method [1-3], Limiting nonstationary flows of
an inviscid gas were studied in [4, 5],

1, We consider the self-similar motion of a gas behind a strong shock wave propa-

gating according to the law

x = Nytfy (5), y = Nytfy (s) (1.1)

Here z and y are Cartesian coordinates, NV, is a characteristic velocity of displacement
of the shock wave front,and ¢ is time, If we let s denote arc length of the wave front
in the plane of self-similar variables, then the functions f, and f, must satisfy the con-
dition f,? - f,> = 1.In the axisymmetric case we take the z, y plane to be a me~
ridional plane with the x -axis as the axis of symmetry,

We assume that all the hydrodynamic characteristics of the flow depend on two vari=-

ables £ and 1. We write the gasdynamic equations in Lagrangian variables; by virtue
of self-similarity, these variables are introduced in the form



